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Abstract

Sincethe early forties, one-point turbulence closuremodels have beenthe canonical

tools used to describe turbulent flows in many fields. In geophysics,Mellor and Yamada

applied suchmodels using the 1980 state--of-the art. Since then, no improvements were

introduced to alleviate two major difficulties: 1) closureof the pressurecorrelations,which

affects the correct determination of the critical Richardson number Ricr above which

turb ,lent mixing is no longer possible and 2) the need to express the non-local third-order

moments (TOM) in terms of lower order moments rather than via the down-gradient

approximation as done thus far, since the latter seriously underestimates the TOMs. Since

1) and 2) are still being dealt with adjustable parameters which weaken the credibility of

the models, alternative models, not based on turbulence modeling, have been suggested.

The aim of this paper is to show that new information, partly derived from the newest

2-point closure model discussed in paper III, can be used to solve these shortcomings. The

new one-point closure model, which in its simplest form is algebraic and thus simple to

implement, is first shown to reproduce a variety of data. Then, it is used in a O-GCM

where it reproduces well a large variety of ocean data.

While phenomenological models are specifically tuned to ocean turbulence, the present

model is not. It is first tested against laboratory data on stably stratified flows and then

used in an O-GCM. It is more general, more predictive and more resilient, e.g., it can

incorporate phenomena like wave-breaking at the surface, salinity diffusivity, non-locality,

etc. One important feature that naturally comes out of the new model is that the predicted

Richardson critical value Ricr is Ricr~l in agreement with both LES and empirical

evidence while all previous models predicted Ricr~0.2 which led to a considerable

underestimate of the extent of turbulent mixing and thus to an incorrect mixed layer

depth. The predicted temperature and salinity profiles (vs. depth) are presented and

compared with those of the KPP model and Levitus data.



I. Introduction

One-point closure turbulence models have a long tradition that begun with the

pioneering work of Chou (1940, 1945) that was subsequentlyextendedand improved by

Lumley and Khajeh-Nouri (1974), Launder,Reeceand Rodi (1975), Pope (1975), Lumley

(1978),Rodi (1984)and Shih and Shabbir (1992).For a review, seeGatski et al., (1991). In

a pioneering work, Mellor and Yamada (1982, MY; Mellor, 1989) applied the 1980

state--of-the-art 1-point closuremodels to geophysicalproblems. The original MY model

is known for its successesand its failures: 1) it does not parameterize the pressure

correlations correctly. This has two consequences: it predicts a critical Richardson number

Ricr=0.2 (above which turbulence can no longer be maintained) that is much smaller than

Ricr_l required by empirical evidence and LES (large eddy simulations, Wang et al, 1996),

which means that the YM model underestimates the extent of turbulent mixing and given

in correct mixed layer depth, second, the model does not fit the PBL surface data, 2) it

treats the third-order moments (TOM) with the down-gradient approzimation (DGA)

which is now known to severely underpredict the true TOM. And yet, even the most recent

applications of the MY model to ocean turbulence (e.g., Rosati and Miyakoda, 1989;

Galperin et al., 1989; Gaspar et al., 1990; Blanke and Delecluse, 1992; Baum and Caponi,

1992; Ma et al., 1994; Kantha and Clayson, 1994; Burchard and Buamert, 1995; D'Alessio

et al., 1998), still use the original model with changes that do not solve the difficulties 1)

and 2). It is fair to say that, unless and until such shortcomings are solved, the credibility

of the model is at stake. We have solved 1) and 2) as follows. Pressure correlations

originate from the Navier-Stokes equations for the turbulent velocity field which contain

the pressure gradients. For example, in deriving the equations for the Reynolds stresses and

the heat fluxes, vectors and tensors appear which represent the correlation of fluctuating

temperature and velocities with P,i:

O= _,,i + (1)II i 1-lij= ujP,i ujP,i
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wherep, ui and t_ are the fluctuating components of the pressure, velocity and temperature

fields. Since the fluctuating pressure p does not satisfy the hydrostatic equilibrium

equation_ these higher-order terms must be modeled in terms of second-order terms. As

discussed in Appendix A, the most complete expressions are (for sake of simplicity, we

leave out the numerical coefficients; all the tensors are defined in Appendix A)

IIij = 2r_)v1bij,_ - _KSij_ + Sij- Eij- Zij (2)

1-I_= rp_ _ + Ai-_ -(Sij + 35-Vij)uj--_. (3)

The first terms in both 2) and 3) represent the return to isotropy or Rotta terms; the

second and third terms in (2) are the contributions due to shear (Sij) and buoyancy (Bij);

the fourth term is due to the non-isotropic contribution due to shear while the last term is

entirely due to the vorticity Vij. None of the second-order closure models employed thus

far in O-GCM has employed the full form (2-3) and that is why these models often

underestimate the true value of Ricr. For example, even the rather complete analysis by

Kantha and Clayson (1994) adopts the simplified expressions

Ilij = 2rp_bij - 5KSij

I-I_= Tp_ _ + Ai'_- Siju7 (4a)

which neglects the last three terms in II... The model of D'Alessio et al. (1998) adopts an
lj

even simpler expression:

IIf -- Tp_ _ ÷ Ai_ (4b)

which also neglects terms in II.. which we have found instrumental in the determination of
lj

Ricr. We have adopted the full forms (2)-(3).

The second problem concerns the pressure-temperature and the pressure-velocity

time scales rpO, rpv. Specifically, the question arises as how to evaluate the ratios

rp0/r , rpv/V (4c)

assuming that the dynamical time scale r=2Ke 1 is known from solving the dynamic

equations for K and (. All one-point closure formalisms thus far have been unable to

determine (4c) and empirical constants were thus introduced to represent rpO/r and rpv/T.



These adjustable parameters weaken the credibility of the model. The two-point closure

model discussed and employed in paper I has allowed us to determine such time scales

whose values are no longer free. They are given by:

r rr_P_ r 0pv 2 0 1 -1 -1 (4d)7" =5' =5(l+at) ' 7 = at

where a t = 0.72 and where we have added the temperature variance (='02) dissipation time

scale r 0. An immediate bonus of these improvements is that the new model matches the

measured surface PBL data rather well:

Table I

_/2K v--2/2K w--2/2K Ri(cr)

PBL data 0.56 0.27 0.18 0.5

MY Model 0.56 0.22 0.22 0.2

New model 0.56 0.27 0.18 0.5

Next, we discuss the problem of the third-order moments TOM which represent

non-locality. The prototype is the flux of turbulent kinetic energy:

F(K) = {q2w, K ={q2 (5a)

All ocean turbulence models used thus far either disregard the TOM altogether (local

model), or use the DGA which assumes that the kinetic energy flux is along the gradient of

K:

OK (5b)F(K) = - KmO z

However, as shown by Moeng and Wyngaard (1989), the DGA severely underestimates the

true value of the TOM and thus, it should be avoided. All ocean turbulence models that

employ a prognostic equation for K (Rosati and Miyakoda, 1989; Gaspar et al., 1990;

Blanke and Delecluse, Ma et al., 1994) have adopted the DGA, (5b). In addition, the

diffusivity K m is taken proportional to w/: however, in the case of stratification, K m is a

combination of both the momentum and the heat fluxes,



Km = awl + bw----0 (5c)

and since for stably stratification, _ is negative, the second term decreases the diffusivity.

Once the down-gradient approximation is abandoned, the only alternative is to consider

the full dynamic equations for the third-order moments (Appendix B) and try to solve

them. In the 1D case, this was done and the results are as follows (Canuto et al., 1994)'

q2w=E 0 -- 0 w 2 ___.02 0_-2
l_-w0+ E +E +E2 _ _ 0Z 4

w3= B 0 0 w 2 0 O q2l_-_w0+ B + B 02+ B
m

w20=A0___ - O w--{+ A a 02
1ozW0+ A 2_ 3"_"

0 0 w 2 0
w02=C1_w0+C23_ +C3_ 02

B

+A 0 q2
4_

+C 0 q2
4_

q20= D 0 0 w 2 0 2 0 2l_WO+D +D +D2_ 3_ ° 4

0a=F O O w 2 0__02 O 2 (5d)l_w0+F +F +F &---q2 _" 3 0Z 4

Eqs.(5d) exhibit a remarkable symmetry: all the third-order moments have the same

structure since they are linear combinations of the derivatives of all the second-order

moments. Second, all the turbulent diffusivities A-F exhibit the same general structure

(5c). The DGA corresponds to taking

A =0, B =0, C =0
2,3,4 1,3,4 1,2,4

D = 0, E = 0, F = 0 (5e)
2,3,4 1,2,3 1,2,4

In Canuto et al. (1994) the new TOM (5d) were tested against large eddy simulation data

for the PBL. The results were quite good. Eqs.(5d) are the most complete representation of

the TOM presently available.

Finally, we discuss the dissipation length scale. The dissipation rate e of the turbulent

kinetic energy K is one of the most crucial and most difficult variables to model. Although

an exact differential equation for c was derived long ago, it has been used only very seldom

(e.g., Burchard and Buamert, 1995). Most frequently, use is made of the local form:

= g-lK3/2 (5f)



The problem then reduces to the evaluation of the dissipation length scale g. Until recently,

several empirical expressions for g have been proposed which often seem to contradict each

other. Among these formulae, the most widely used are the ones due to Deardorff (1980)

which includes only buoyancy, and by Hunt et al. (1988) which includes only shear. Neither

expression is valid in the limit of small buoyancy or shear. Starting from a theoretical

formulation of the buoyancy spectrum in stably stratified flow due to Lumley (1964) and

Weinstock (1978), a new expression was derived for E that: a) inclades both buoyancy and

shear, b) encompasses all previous models of g, c) behaves well for small buoyancy and/or

shear, and d) explains the non-monotonic behavior of g found by LES.

In conclusion, we show that a one-point closure model free of the uncertainties of the

past can be constructed. Tests of the model are presented before being used in an O-GCM,

the results of which are also presented. On the basis of its overall performance, the model

will be further expanded to include salinity (paper II).

III. Turbulence model

We begin by recalling that in an ocean GCM the equations for the mean velocity and

mean temperature entail the Reynolds stresses uiu j and the heat fluxes h i

rij= uiu j, hi= ui----i0 (6a)

where u i and 0 are the fluctuating components of the velocity and temperature fields. The

well established procedure of deriving the dynamic equations for the variables (la) entails

other turbulence variables, specifically (u and X are the kinematic viscosity and thermal

conductivity):

K = _rii (turbulent kinetic energy)

= (temperature variance)

e=u(_.) 2 (dissipation rates of K)
J

(6b)

(6c)

(6d)



eO=X(_-_.) 2 (dissipation rates of _) (6e)
1

There are a total of 12 independent variables, each of which satisfies a separate dynamic

equation, and each of which depends on the others so that it is not possible to derive the

heat flux without solving the equation for the Reynolds stresses and viceversa. Since the

derivation of the dynamic equations for the turbulence variables (6a-e) has been presented

elsewhere (e.g., Gatski et al., 1991; Canuto, 1994), we shall only cite the results.

a) Turbulent kinetic energy K:

DK
D---_-+ Df(K) = Ps + Pb - e

where the production terms P's due to shear and buoyancy are defined as

(7a)

Ps ---- rijSij' Pb- Aihi'

while the divergence of flux of turbulent kinetic energy Fi(K ) is given by

Dr(K) ---_.Fi(K), Fi(K ) = _p_2_ i
1

Finally, )_i-giaT with gi=(0,0,g) and O_T=-P-lOp/OT. The shear Sij

b) Temperature variance (potential energy) 0_:

(7b)

(7c)

is defined in Eq.(A.6)

°22 (8a)_-t (g2 + Df ((0"2) = P0- e0 + _)/_x.
1

P0 - h 0-I' ±0 'u.----_'
= i-0-x-i, Of(½-02) = 2"0xitU i ) (8b)

P0 and Df represent the rates of production and transport of the divergence of the flux of

temperature variance and e0 represents the rate of dissipation of ½"02, Eq.(6e).

c) Reynolds stresses, bij - rij-§ K$ij:

_tbij+Df(bij ) : 8 -1 b..+_ B..-(1-_ )E..-(1-_ )Z..-i5KSij-2rpv lj 5 lj 1 1j 2 lj (9a)

The traceless tensors B, IE and Z are defined as

B..=1jA hj+Ajhi- eijakhk (9b)



ShearSij

£ij = Sikbkj+ Sjkbik- _/_ijSkgbkg

Zij -- Vikbkj+Vjkbik

and vorticity Vij are defined as:

l/OU i OU. .t r OU i OU
= , = -_xx))Sij 2__- i + -O--_-.J), Vij 2tOffj ]

The diffusion term is defined as

Df(bij)

c) Heat flux: hi=u17

0 -- 1

= _xk(uiujuk-- _ t_ij_u k)

(9c)

(9d)

(9e)

(9f)

_thi ÷Df(h i) = _ rij_x j -(1--_-aa)hjSij- (15o3)hjVij ÷(1-71)A1-_ -

where

d) Dissipation rate e#

e) Dissipation rate ¢:

Df(hi)= _)xj(Ui_ ÷ 6ijP-O)

C0 ---- T01"_ 2

D{[

D--t + Df(_) = cK-I(clP s + CaPb) - c2c_K-1

Df(c) = _xi_ ij

0 2

rp_ i + X_-?h i
J

Since we have assumed an algebraic for c0, the number of dynamic equations is now 11.

(lOa)

lOb)

11)

12a)

12b)

IV. Diffusion terms Df

The third--order moments are discussed in Appendix B.

V. Algebraic Models

The above model is complete and allows us to compute the turbulent variables of

interest. In its full dynamical form, it is obviously rather complex since it entails 11

9



differential equations. In this section,we presenta model in which we retain only two of

the eleven differential equations, those for K and c. The procedure, known as ARSM,

algebraic Reynolds stress models, neglects the D/Dt and the diffusion terms. After some

algebra, we obtain:

Reynolds Stresses:

bij = _ 45K rpvSij + _35 rpvBij- _ rpv(1-°_l)Eij- _ 7pv(1-_2)Zij

Since the last two terms depend on bij itself, Eq.(13)is a system of linear

equations.

(13)

algebraic

Heat fluxes:

Off' 14a)
Aikh k = _ (Kh)ij -_-.

J

where the turbulent heat conductivity tensor is given by

(Kh)ij = 7(bij+ 2_ijK), 7=2K_ -1 14b)

The dimensionless tensor A.. is defined as:
U

T

Aij rpO_ij + (1-71)rr_i_x j + (1--_a3)rSij+(15(_3)vVij ]4c)

The fact that the rhs of (14b) depends on bij which in turn depends on h i via Bij makes the

analytic solution in the 3D case somewhat cumbersome though manageable with symbolic

algebra. In order to homogenize the notation, we introduce the dimensionless constants:

r

A=--P-v'r AI= 45 t, A2= 'a(1-°_l)A' A3= ½(1-a2)A' A4= _35A

r 3 :} 1_71)?A--7 ,A =1- a3, A- 1- a3, A = (
5 pO 6 7- s

Thus, Eqs.(13) and (14c) can be written in the compact form:

(14d)

bij = - AlrKSij + A4rB..-U A2rEij - A3rZij

Aij = A5_ij + Asr2Ai_xj + A6rSij+ ArrVij

(14e)

(14f)

VI. Vertical Diffusivities
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Here, we present the analytic solution of Eqs. (13)-(14) for the following case:

OT 0T
_x i -_ _-£ fii3'

The shear and vorticity acquire the form:

0U/0z_Ei o ov  j,Sij= _ 0
U/az ov/a_

u i = [U(z),V(z),o]

au/&_
o o OV_Ozjvij=½ ___U/Oz _ _v/oz

(15a)

(15b)

Using symbolic algebra, one can solve Eqs.(14a,b,e, f). The results are as follows:

Reynolds stresses:

Time scale:

Turbulent kinetic energies:

Mean shear:

Heat fluxes:

-K 0U
Kff= m_-£'

-K 0V
vw = m-_-

-- , 8U 0V
UV = (A2-t-)_3)TlXm_--

K
½r= T

2.
u _ = _K + _-rKm[ (A2+3A3)(-0-_-)0U2 _ 2A2(__z )21 + __A4Kh TN 2

-- 1 - "A 3A ,.0V,2 DU 2 2 2
v 2 2 K + _rKm[( 2+ 3)_-3--£)= -2A2(-0_-) ] + _A4KhrN

w--_= 2 K + I(A2_3_3)KmrE2 _ _4KhrN2

}22 IOU_2+t0V_2
=--_-£) _-_)

_K 0T
w--0= h_-

ouu---8=- A_'[Km+i(A6+A7)Kh]r _-

_=-A-'[Km+I(A +A )Khlr_-z _zz
5 6 7

Turbulent momentum and heat diffusivities:

K 2

Km= 2SmT,

K 2
K h = 2ShT

(16a)

(16b)

(17)

(18a)

(18b)

(18c)

(18d)

(19a)

(19b)

(19c)

(2oa)

As discussed in I, the dimensionless structure functions Sm,h are instrumental in

11



beingable to show that the model satisfiesa well known feature of stably stratified flows

(Webster, 1964),namelythat the turbulent Prandtl number
K

m
_T = lVTh

is an increasing function of the Richardson number Ri:

d aT(Ri ) >0, Ri -=g-g-_ TL0zffffi

The function aT(Ri) vs. Ri will be discussed in sec. XVIII.

(20b)

(20c)

VII. Structure Functions

Dimensionless functions Sm,h:

DS m = s0 + sl(rN)2 + s2(rE)2 (21a)

DS h = s4 -1- ss(rN)2 + s6(rE)2 (21b)

D = d + d (rN) _ + d2(rE)2 + d (rN) 4 + d (raNE) 2 + d (rE) 4 (21c)
0 I 3 4 5

Plots of Sm, h vs. Ri will be exhibited in sec.XVIII.

Dimensionless variables Sk:

s 3A A2 (22a)
0 =]_ 1 5

Sl=--- A4(A6q-A7) q- 2A415(AI- _-A2-A3) -Jr-_AIA5A 8 (22b)

s = 3A (A2 A2_
2 -8 a_ 6- 7j' s4-2As, s5=2A4 (23a)

s6= _1o5(312-12)a2 - _151,(31a-12) + _1,(16-1r) (23b)

Dimensionless variables dk:

d = 3A 2 (24a)
0 5

d, = 15(714+ 3ks) , d 2 - k25(312a-k22)-g(k6-k7)32 2 (24b)

d -=1 (41 +31s) , d =41-(12 ' 3A:a) ' 2a 4 4 5 - (16-1r) (24c)

d4 - 1411216 - 31a17-15(12,-A'a)1 + 151s(3123-122) (24d)

As a way of comparison with recent work, we notice that the expressions for u---_ and w--0

employed by D'Alessio et al. (1998, see equations 6-12) are equivalent to taking E-+0, that

is, their diffusivities do not depend on the source (shear). In that case our Sm would

12



becomea constant

Sm = 0.09 (24e)

As we shall show, in our model this value corresponds to Ri_<0, whereas one expects that

S
m decreases with Ri for the reasons given above.

Since in the above relations K and e have remained unspecified, one can choose

different models.

VIII. First non-local model.

In this case K and c are taken to satisfy the two non-local equations:

DK E2_KhN__ e (25a)D t + D(K) = K m

Dc E 2 C3KhNl_ ) - C e2K -1 (25b)Dt + D(e) = cK'I(clK m - 2

This type of model was adopted by Baum and Caponi (1992), Kantha and Calyson (1994)

and Burchard and Baumert (1995).

IX. Second non-local model.

In this case, one retains only one prognostic equation, the one for the turbulent kinetic

energy K, Eq.(25a), while Eq.(25b) is taken in its local limit

c = A-1K a/2 (25c)

where the mixing length A has to be specified. Models of this type with down-gradient

approximation for the diffusion term were considered by Rosati and Miyakoda (1989),

Gaspar et al. (1990), Blanke and Delecluse (1993) and Ma et al. (1994).

X. Third non-local model

In this model, Eq.(25a) is taken in its local form by neglecting the left hand side

altogether while one retains Eq.(26) so as to avoid the need to introduce a mixing length g.

The local limit of (25a) is physically equivalent to assuming production=dissipation,

= KmE2 - KhN2 (26a)

13



or, usingthe relation r=2Ke -1,

(rE)_Sm - (Nhr)2Sh = 2

UsingEqs.(22a--c),Eq.(26b) becomesanequation for the dimensionlessvariable

(r2) 2=_

The result is:

A_ + B_ + C = 0

A - _.(s5+2d3)Ri2 -..(sl-s6-2d4)Ri - s + 2d2 5

B=..Cs4+2dl)Ri-s +2d2, C=2d
0 0

The function 4' vs. Ri will be discussed in sec. XVIII.

(26b)

(26c)

(26d)

(26e)

XI. Fully local model

In this case, both Eqs.(25) are taken to be local; K can then be expressed as

K
1_ = ¢-1, K = 4A2Z 2

0
0

Once a model for A is provided, the model becomes fully algebraic.

(27)

XII. The critical Richardson number

The critical Richardson number Ri is defined as the value of Ri above which
cr

turbulent mixing is no longer possible due to the action of stable stratification. While linear

analysis yields the result Ricr=l/4 (Maslowe, 1981), it has been found (Martin, 1985) that

a reliable prediction of the mixed layer depth can only be achieved if Ricr~l. Early

laboratory data by Taylor (cited in Monin and Yaglom 1971) indicate that turbulent

exchange exists even when Ri>l. In addition, recent LES studies (Wang et al., 1997) also

show that turbulence exists up to Ri~l. This is therefore a critical test of any turbulence

model. As discussed earlier, the original MY model gives an Ricr=0.2 which is even smaller

than the result of the linear stability analysis, Ricr=l/4. We shall define Ricr as the value

at which the kinetic energy vanishes:

14



K(Ricr)=0 (28a)

Since/v,_K-1,Eq.(26d) implies that in the limit K_0, A(Ricr)--0 which in turn gives

Ric-- (2cl)-1[- c2+ (c22- 4c,c3)k]

c1= s5+ 2d3, c2= -sl+s6+2d 4, c3= -s2+ 2d5 (28b)

Usingthe modelconstantsdiscussedbelow,

Ric -- 0.846(model A)

Ricr = 1.03(model B) (28c)

in agreementwith the data referredto earlier.

XIII. Realizability Conditions

Sinceby definition (rE)2>0, from Eq.(26b) it follows that the minimum value of rN is

(rN) 2min = - 2S1_' (29a)

or, using (21b) and the model constants,wederive:

(rN 2)min = - 12.27 (29b)

negative value of (rN)2minmeansthat it occursin the unstable region. In the stableThe

region, (rN) 2 is limited by stablestratification asfollows (Deardorff, 1980)

(32rN)max = 4.66 (29c)

On the other hand, by arguing that an increaseof shearshouldnot result in a decreaseof

-uw, one canderivean expressionfor the maximum value for (r2)2:

(rE) 2max _ [d0+dl(rN)2+d3(rN)4][d2+d4(rN)2]-I (29d)

In applying the model, weshall usethe following realizability conditions:

(TN)2= (7N)m_in

(rN)2= ( , 2rN )max

(Try)x

if (7N)2< (rN)_ti n

if (rN)2> (rN)_ax

if (TE)2>(rE) 2max (29e)

XIV. The representation Kh=TeN-2

Several authors (Thorpe, 1977; Osborne, 1980; Oakey, 1982; Moum, 1989; Davis et al.,
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1994;Toole et al., 1994;Wuest et al., 1996)have representedthe turbulent heat diffusivity

Kh in the form:

The derivedvaluesof 7 are:

(30a)Kh = 7N-2

0.12_<7_<0.48 (30b)

Using(26a), weobtain:

Rf
7= 1_- f' Rf= Ri aT1 (30c)

where use must be made of (20b). The function 7(Ri) vs. Ri is discussed in sec.XVIII. The

value 7=1/4 (e.g., Oakey 1982; Toole et al., 1994) occurs at Ri=0.25. In using (30a), care

must be exercised here since in general the heat diffusivity K h is not the same as the "mass

diffusivity" K defined via the relation:
P

-_W-_ = - K p_ z (31a)

It is easy, to derive the relation

K s °_S

Kp = Kh(1-F, h Rp)(1-Rp)-', Rp= _--- _'_z (31b)

where K s is the salt diffusivity and Rp is the Turner number (a S is the haline contraction

coefficient). As in the present case, Ks=Kh, it follows that Kh=K p.

XV. Breaking Waves

It has been known for a number of years (Kitaigorodskii et al., 1983; Gargett, 1989;

Agrawal et al., 1992; Anis and Mourn, 1994; Drennan et al., 1996; Terray et al., 1996, 1997;

Burgers, 1997; Skyllingstad et al., 1999) that in the ocean mixed layer beneath actively

breaking waves the dissipation rate e of turbulent kinetic energy K is even two orders of

magnitude larger than the one corresponding to the "law of the wall":

ewall = ua(az)-l' u,= (r/Pw)½ (32a)

which can be derived from (27). Here, where _;~0.4 is the von Karman constant, z is the

distance from the "wall", r is the surface wind stress and Pw is the density of seawater. To
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incorporatethe wave breaking phenomenoninto a turbulence model, oneneedsto solve the

dynamic equation for the turbulent kinetic energy, Eq.(25). This in turn requires that a

boundary condition to specify K at z=0. Craig and Banner (1994) first proposed the

expression(K__q2)

qlz--0 = (12ci@/6 u2./3 _I/3 (32b)

where _ is the "effective phase speed" (Terray et al., 1996) that enters the rate of energy

input to the waves from the wind, F=ra_/Pw~U2wC=_uaw, where r =p u2, =p u2,a a a w W

(a:atmosphere, w:water). Craig and Banner (1994; their equation 27) use o rather than _.

The coefficient c =0.18. In Appendix C we present a new and simpler derivation of (32b)
1

and in sec.XVIII we discuss the results of our model with breaking waves.

XVI. Modeling the length scale 3.

We begin by writing h that appears in (25c) as

(33a)A =

and require that f(0,0)=l. Here, A is the size of the largest eddy, k A=Tr while f(N,E)
0

represents the distortion of the Kolmogorov spectrum due to stratification and shear.

Though a satisfactory theory of the energy spectrum E(k) under shear and stable

stratification is still not available, there is some consensus (Gargett et al., 1981) about the

overall shape of E(k):

I:

II:

III:

where Fr is the Froude number

E(k)=(eN)½k 2,

E(k)=cN2k -3,

E(k)=Ko_:2/ak-5/a,

Fr<l, Ri>l

Fr=l, Ri~l

Fr>l, Ri<l (33b)

1
K _

Fr = XN (33c)

For the ocean c_10 (Gargett et al., 1981; Gargett 1989), while atmospheric data suggest

c_100 (Dewan, 1979) so that the interval between regimes I and II may be one or two
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decades.RegionsII and III coincideat a length scalegiven by the Ozrnidovscale,
1

K _
= (33d)ho = N

Deardorff (1980), Hunt et al. (1988) and Fernando and Hunt (1996) have suggested the

following phenomenological relations:

l 1
K 2 K _

f(N,0) = 0.76 _N" f(0,E) = 2.76 _ (33e)

Deardorff's result, the first of (33e), comes from substituting Eq.(27) in the Ozmidov scale.

Neither expression satisfies the condition f(0,0)=l and thus they have a limited validity.

Furthermore, f(N,0) implies that

K
r~--~ AK -_ ~ N -1, 7-N ,-constant (33f)

(

which in turn implies that

_p= (rE)2 ~ Ri -1 (33g)

while (28d) implies the opposite, namely a 0 that increases with Ri. Similar remarks are

valid for the second of (33e). There have been several attempts to construct a model for

(1964) model implies a function f(N,E) of the form (Cheng andE(k,N,E). Lumley's

Canuto, 1994):

f(N,E) : [1-clFr-2(1- c2aTRia)]-3/2 (34a)

where aT=aT(Ri ). The two constants are given by

c = (2_a3k)-_Ko 3/2, c =0.4-0.6 (34b)
1 2

As discussed in Cheng and Canuto (1994), Lumley's formulation is valid only for small

levels of stratification. Weinstock (1978) suggested an improvement of Lumley's model and

the corresponding form of f(N,S) is (Cheng and Canuto 1994):

f(N,E) = [(1-A2B2) _ - AC] -3

where

A = al(1 -c2aTRi-1 ), B -1 = a2+Fr2, C -1 = a3+Fr2

al= S.6810-3Ko 3/:_, a2= _10 -2, a3= r_ 10 -2

(34c)

(34d)

Recently, Cheng and Canuto (1994) improved on both Lumley and Weinstock's model and
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checkedthe result againstLES data (seetheir Fig.5). The function f(N,E) is given by:

f(N,E) = [1 + aFr-2(l+bFr-4/3)-l] -c (34e)

where

Rf< c2:

Rf> c2:

3a = 2(37r2)-l(Q-1), b = 0.12 (_ - 1 - _'1) 4/9, C-----_- (34f)

a = 4(5_r2)"_t, b=0, c = _ (1-_-')

9t = 1 + 3kKoa/2(aTRid - 1) (34g)

Canuto and Cheng (1997) have further improved on their original model and their new

expression for f(N,E) is Equation (6a) of that paper. In the case in which one considers only

shear, f(O,E) simplifies considerably:

2f-2/3 = 1 + pSh 2 + (1 + 2pSh 2- 4p2Sh4)k

where

(34h)

l _(2_3k)_,Koa/2Sh = AEK -_, p= (34i)

In the simplest model, A is determined using the Deardorff-Blackadar formula:

h = 2-3/2B g, B =24.7,
1 1

g= min(_, el) (34j)

g_= _go(/o + _z)-I ' go= 0.17H (34k)

where _q2=K is the turbulent kinetic energy, N is the Brunt-Vaisala frequency, _=0.4 is

the von Karman constant and H is the mixed layer depth. When used within the NCAR

CSM Ocean Model, H is determined as the depth where the buoyancy difference

g[p(H)- p(surface)]p(H) -1 = 3 10-4ms -2 (34g)

XVII. Model constants

As discussed in the Introduction, we use the new two-point closure turbulence model

discussed in paper I to determine the critical time scales. The results are:
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rrpb= 5(l+a{1), rer*= a t

at=0-72, 71= ½, 35=0.6,

4 s _32=2-73 s, a3=4, F=0.64 (35a)10as=l+gF_, 31=6a s,

The values of the A's defined in Eq.(14d) are then as follows:

Model A: (A1,A2,Aa,A4,A5,A6,Ar,A8):

(0.107, 0.0032, 0.0864, 0.12, 11.9, 0.4, 0, 0.48) (35b)

The corresponding Ricr is:

Ricr= 0.846 (35c)

which is more than four times larger than the MY result. On the other hand, to lend

further support to the turbulence model that led us to (35b), we have devised an

alternative procedure (Appendix D) which is based on entirely different considerations and

which gives very similar results:

Model B:

(A ,A ,A ,A,A,A ,A)=
1 2 3 4 5 6 7 8

(0.127, 0.00336, 0.0906, 0.101, 11.2, 0.4, 0, 0.318)

with Ricr:

(35d)

(35e)Ricr = 1.03

In the first model, we have also used data from Shih and Shabbir (1992).

XVIII. Tests of the model

We begin with the case of pure shear, Ri_0, which has been widely studied. In this

case, we have (to first order) from (21a,c)

4 (363)DS re=so, D=do, Sm=

Thus, the first of (20a) becomes

K s
K m -- C/t-g- , Cp=0.11 (36b)

which is the well known formula employed in shear flows studies (Rodi, 1984).
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In Fig.1 we exhibit the dimensionlessstructure functions Sm,h vs. Ri for the full local

model, Eqs.(21a,c)and (26d). The left hand side of the figure is for unstable stratification

(Ri<0) while the right hand panel is for stable stratification, Ri>0. As one canexpect, the

relative position of the curvesswitchesas one movesfrom negative to positive Ri. In the

unstable case, the heat diffusivity is larger than the momentum diffusivity since one

expectsthat the temperaturegradientaffectsmore the heatdiffusivity than the momentum

diffusivity. The reverseis true whenstratification is stable.The lower value of Sh vs. Sm _

in accord with the laboratory data for the turbulent Prandtl number which we discuss

below. In Fig.2 weexhibit the dynamical time scaler in units of the shear E vs. Ri, that is

the function _,(Ri), Eq.(26c), which is solution of Eq.(26d). As expected, the stronger the

stratification, the longer is the eddies life time, or equivalently, the smaller the turbulent

kinetic energy, since ¢,_K -a. In Fig.3 we report the laboratory data for a T vs. Ri by Webster

(1964) and in Fig.4 we exhibit the predicted turbulent Prandtl number a T vs. Ri, Eqs.(20b)

and (21). In Fig.5 we show the predicted flux Richardson number Rf vs. Ri defined in

Eq.(30c). In Fig.6, we present a set of laboratory data for Rf vs. Ri from the work of

Maderich et al. (1995). Since the definitions of the Richardson numbers in Figs.5 and 6 are

not identical, the two figures cannot be superimposed; however, what is important is the

general behavior which is very similar. In Fig.7 we exhibit the predicted value of the

efficiency parameter 7 defined in Eq.(30a,c).

In Fig.8 we exhibit the rate of dissipation of turbulent kinetic energy e vs.depth z with

and without the wave breaking phenomenon. As one can observe, the dotted line

representing the law of the wall, Eq.(32a), provides a good representation of the data only

when the wave breaking phenomenon is not important, which occurs at considerable

depths. Near the surface, the data indicate a much larger dissipation rate (crosses and

triangles, Terray et al., 1996) which the turbulence model can reproduce quite well (full

line) using the dynamic equation for the turbulent kinetic energy (25) with the boundary

condition at z=0 given by relation (32b). The values of H s, u. and c are taken from tables
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1,2of Terray et a1.(1996)and from table 1of Drennanet a1.(1996).

XIX. OceanGCM

To test the new vertical diffusivities, we used the global oceangeneral circulation

model NCAR CSM OceanModel producedby the University Corporation for Research,

National Center for Atmospheric Research,Climate and Global Dynamics Division. They

developedthe model from the MOM 1.1 GFDL code (seethe NCAR CSM Ocean Model

Tech. Note, The NCAR CSM OceanModel, by the NCAR Oceanographysection). We

employedthe stand-alone 3°x3° configuration of the model detailed in their technical note

with the default parametervalues.It has3.6ospacingin longitude and a variable spacingin

latitude increasingfrom 1.8oat the equator to 3.4° at 17oN, S and then decreasingback to

1.8o for 600N, S and poleward. There are 25 levels of increasingthickness in the vertical,

with the surface level 6 meters thick. The option for the GM mesoscaleeddy

parameterizationwasenabled.Bulk forcing with a seasonalcycleplus a 1/2 year timescale

restoring condition on the salinity is used, except under sea-ice where there is strong

restoring. This configuration correspondsto the caseB-K describedin Large et al. (1997).

It shouldbe noted, however, that for determination of the length scalein our turbulence

modelwe usedthe program's definition for mixed layer depth (a buoyancydifferencefrom

the surfaceof 3 10-4ms-2),which is different from that graphed as a diagnostic in Fig.5 of

Largeet a1.(1997).We initialized our runswith annually averagedLevitus data and ran for

126momentum years.As in Largeet al. (1997)a 3504sectimestep for momentum is used,

while for the first 96 momentum years the tracers are acceleratedby a factor increasing

from 10at the surfaceto 100 for the deepocean.We then set all timestepsequal for the

remaining30yearsasthey did.

First, we ran the NCAR program as is, with the option for the KPP mixing enabled,

producingthe KPP data presentedin the figures below.Then, in placeof the KPP module,

we inserted a module which usesour new model for the diffusivities for momentum and
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heat with the salt diffusivity set equal to that of heat. To save computing time, we

constructedtables of the dimensionlessfunctions Sm,h and of the dimensionlessvariable y

obtainedfrom solvingEq.26aand usingEq.(25c),

y = _x2(_)2 = _-_r- t¢2, x2= A:2Z2K -1 (37a)

vs. Ri. Then, for each point in space and time these were interpolated to the local Ri. The

diffusivities Km,h(model ) were rewritten as

= _Bly-½Sm, h (37c)Km,h/t'22

XX. Below the Mixed Layer

Below the ocean mixed layer, we employed the same background diffusivities as in the

NCAR model, specifically:

Km=16.7 cm2s -1, Kh=Ks=0.5 cm2s -1 (38)

XXI. Ocean GCM

The results using the new vertical diffusivities K m and Ks=K h are presented in

Figs.9-20 where we exhibit the model results (squares) Levitus data (-) and the results

using the KPP model (diamonds). We present both global T and S, Figs.9-10, as well as

specific basins, artic, atlantic, pacific, indian and southern oceans.

XXII. Conclusions

The goal of this paper was not only that of devising a model for the vertical

diffusivities that performs better than previous models. The overall goal had a much wider

breadth, that of building a model that satisfies several conditions:

1) the model is not tailored specifically to ocean turbulence like previous model (e.g.,KPP),

2) before being used in an O-GCM, it must be shown to reproduce well documented

laboratory, atmospheric and LES data on stratified turbulence, e.g., Figs.3-4, 5-6,
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3) it must incorporate the latest advancesin turbulent closuremodeling so as to naturally

give rise to a critical Richardsonnumber (Fig.2) that correspondsnot only to the empirical

data from mixed layer studies (e.g., Martin, 1985)but which also reproduceslaboratory

data (e.g.,Monin and Yaglom, 1971),

4) in the non-local case,where the flux of turbulent kinetic energy is included in the

equation for the kinetic energy,the model must be ableto reproducethe observedincrease

of dissipation causedby breakingwavesat the oceansurface,Fig.8,

,5)the model not only reproducesthe Kh='_eN-2representationof the heat diffusivity that

hasbeenwidely usedin the pastbut it predicts a value for 7 that varies with Ri, as indeed

expected,Fig.7.

6) after thesetests have beenpassed,the model is testedin an O-GCM without changing

any of the ingredients that havebeenusedto reproduce1)-,5)above.The model is expected

to perform at least aswell as previousad hoc modelslike KPP. Even in the simplest case,

correspondingto a local model,the results shownin Figs.9-20 satisfy this criterion,

7) the strength of the model is its ability to encompassother caseswithin the same

methodology. In the next paper, the model will be extended to include the salinity field

thus allowing g s to be different than Kh, as dictated by laboratory and ocean data.
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Appendix A

Pressure Correlation terms

For the tensor IIij, we employ the most general expression (Canuto 1994):

YIij = 2 rpvlbij + (1-35)Bij- 5KSij- aaEij - a2Z"lJ

where we have defined the following traceless tensors and vectors:

bij = Tij-IK_ij, hi=ui----i_

Bij = Aihj+ Ajh i - _-j26i.Akhk

Zij - Sik bkj + Sjk bik -_ 6ijSktbkg

Sij

In all the above equations,

(Canuto, 1994)

Zij = bikVjk + bkjVik

-- }(Ui,j+Uj,i), Vij= ½(Ui,j-Uj, i)

Ai--c_Tg i (gi=O,O,g), C_T=-pIOp/OT.

ni = rp b _ + 7Ai e _ 3_3(Sij + 5 Vij)uj--_.

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Analogously, we have

(A.7)

Appendix B

Third---order moments, TOM

The equations for the third---order moments are taken from Canuto

presence of buoyancy, shear and rotation, they are:

(1994). In the

(_t+ r3-')TiiUjUk = _ (uiuju-----_Uk,/+perm)- (u---i_£?-]-tik+perm)+ (1--c)(,_i-Oi]ju k + perm)

- ,_r (_ifi2_k + perm) (B.1)

(_)'--t+ r3-')ui_ -- uiujukB k -(uiu----_OUj, k+ujff-kkOUi,k ) -

(uiu k -0xk j + uju k + Ni kOxk i _xkuiuj) +
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2c31,_ijAk-_Uk+ (1--c,,)(Ai-_uj+Aj-_ui) (B.2)

(B.3)

x --02 _ (B.4)
2

Ox_

where r =r/2C, and c,=7, ct0=4, c =1/5. In the absence of shear, and in the stationary3 11

case, Eqs. (B.1)-(B.4) were solved analytically. The resulting third-order moments

exhibited some unexpected symmetry properties in that they they are all given by the sum

of the gradients of all the second-order moments, see Eq.(5d). These new expressions for

the TOM were shown to reproduce quite well the LES data for a buoyancy driven PBL

(Canuto et al., 1994).

Appendix C

Wave breaking case. Boundary condition for K

Craig and Banner (1994) first suggested that at z=0 one takes the flux of turbulent

kinetic energy F(K), see Eq.(7c), equal to

F(K,z=O) -- _u 3, o_~102 (C.1)

where u, is the wind stress at the surface. To translate (C.1) into a relation for the kinetic

energy at z=0, we proceed in a different manner than Craig and Banner. Consider the

stationary limit of Eq.(25) near the surface. In the absence of a heat flux, we obtain

KmS2 + _z(Km OK = c (c.2)

Since N%0, Eq.(20a) for K m becomes Kin= clK2_-1, cl=2Sm=c°nstant and (C.2) becomes

K m2S2 + Km 0._z(Km __)0K= cl K 2 (C.3)

Since near the surfacer K S2= -u--wS = u 2 and since K2>>u, 2, Eq.(C.3) becomes
m 13
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02K K2,

Multiplying both sidesof (C.4) by 0K/0_, weobtain

0 _K 0K 3_( )2=2

which can be integrated to yield

K OK AK3/2m07 =

Using the second of (C.1), we obtain

au_a = AK3/2

Since (Terray et al, 1996, Eq.5)

c_l, K 0 0
1 m?z=N (c.4)

(c.5)

A2 - _1 (C.6)

a = Uu,

and using K=}q 2, we finally, obtain that at z=0 the velocity q is given by:

q = (12ci')'/6 u2/3 _1/3

which is relation (32b) of the text.

(c.7)

(c.8)

(c.9)

Appendix D

Alternative Determination of the constants (14d)

To determine the constants appearing in Eqs.(14e-f), we adopt from Shih and Shabbir

(1992) and Canuto (1993) the expressions

A
2

where

= (1-ol)(2C4)-1 , A = (13 -- O'2) (2C4)-1

A4 =/_5(2c4)-1, A6 = 1-3a a

A7=1- aa, As=(1-71)7

c = 2 + 6.22 F2(1-F) 3/4- F }
4

o_a= 6a5' a2 = 2(2 -7a5)

4 _t 4
a = 1 (1+ ), a5 i-0 gF' 3 =

F=0.64, _ =0.48
5

(D.1)

(D.2)

The values thus obtained are
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(/_2')k3' A4' /_6' "_7 ) = (0.00336, 0.0906, 0.101, 0.4, 0) (D.3)

To determine A1,5, we employ a neutral surface layer in which the mean profiles are

logarithmic, the mean wind is along the x-direction and z approaches zero,

dU
- uw = u, 2, r _ = (q/u,) 2, }q2----K (D.4)

Under these conditions, the algebraic equations for _, _ and w--2, Eqs.(18a-c), can be

simplified and yield

where

4 2 22 4B_4/3A = 3- ) +1 1

B 1 - (q/u,) 3 = 16.6

in accord with the MY model. Using the values of A and A
2 3

A = 0.127
1

The value of A is obtained in a similar fashion.
5

dissipation in the above neutral surface layer, we have

4/30"t 10 = 1Sh = 2B_ , ato

(D.5)

(D.6)

given in (D.3), we obtain

(D.7)

Assuming that production equals

(D.8)

where ato is the turbulent Prandtl number in the neutral case which we take to be unity.

Applying the neutral condition and z-_0 to the equations for u-0, w--0, Eqs.(19a,b), and using

rS dTw----0= - K hd_- (D.9)

after some algebra we get an algebraic equation for As,

A2-_-B:/3(15 + A2-3A3) atoA 5 - I(A6-AT)B:/a(A6+AT+2ato ) : 0 (D.10)

The solution is

A = 11.2 (D.11)
5

Similarly, from the algebraic equation for _2, Eq.(8a), we have

ro 2/3Q,--= _B Q=r ato 1 "y2u,2/(w--0)2s = 3.1 (D.12)

where the subscript s indicates a surface quantity, and Q=3.1 in accordance with Mellor

and Yamada (1982). Substituting (D.12) into (D.1) and using 71=1/3 gives

r 0

As = (1 - 71)_---= 0.318 (D.13)
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Figure caption

Fig.1. Model predictionsfor the dimensionlessstructure functions Sm and Sh definedin

Eq.(20a)vs. the degreeof stability Ri.

Fig.2. The time scale r, specifically, the variable ¢, Eq.(26c), vs. the degree of stability Ri,

see Eq. (26c). Since Eq.(27) shows that V) is the inverse of the turbulent kinetic energy K,

this figure shows that at Ricr~l, K vahishes for the stratification is to strong for turbulent

mixing to survive. Several 1-point closure models of the Mellor-Yamada type predict a far

smaller Ricr-0.25 which considerably reduces the extent of turbulent mixing

Fig.3. Laboratory data for the turbulent Prandtl number a T vs.Ri (Webster t964); aT is

defined in Eq.(20b) and is the ratio of Sm/S h presented in Fig.1.

Fig.4. The turbulent Prandtl number aT= Sm/S h vs. Ri predicted by the present model.

Several previous models predict a constant a T.

Fig.5. The predicted flux Richardson number Rf vs. Ri, see Eq.(30c).

Fig.6. The flux Richardson number Rf vs. Ri from a variety of laboratory data. The

symbols refer to different, authors cited in Maderich et al. (1995) and refer to either grid

generated turbulence and/or freely decaying turbulence in a stably stratified medium. Since

the Ri used in Figs.5-6 are not identical, a superposition of the two figures in not possible.

What is important is that the general behavior predicted by the model mirrors that of the

data.

Fig.7. Efficiency parameter 7(Ri) defined in Eq.(30a,c) vs. Ri. Even though a great deal of

caution must be exercised in using the data (see discussion after Eq.30c), an observed value

of 7~1/4 (e.g., Oakey, 1982; Toole et al., 1994) is found to correspond to an Ri~0.25 which

is well within the expected values.

Fig.8. The rate of dissipation of turbulent kinetic energy e(z) vs. depth z in meters. The

predicted value of e(z) in the absence of the wave-breaking phenomenon (dashed line) is a

poor representation of the data (crosses and diamonds) in the first 10 meters. A much more
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realistic prediction (solid line) is achievedif wave--breakingis included in the turbulence

model.This requiresa non-local model, the details of which are discussedin Appendix C.

Fig.9. When the newexpressionsfor Kin,h and Ks=K h areusedin the O-GCM, we obtain

the resultsexhibited in Figs.9-20. To easethe comparison,we also ran the sameO-GCM

with the KPP model. The model results are comparedwith Levitus et al. (1994) data.

Global

Fig.10.

Fig.11.Sameas

Fig.12.Sameas

Fig.13.Sameas

Fig.14.Sameas

Fig.15.Sameas

Fig.16.Sameas

Fig.17.Sameas

Fig.18.Sameas

Fig.19.Sameas

Fig.20.Sameas

temperaturevs.depth.

SameasFig.9 for the global salinity

Fig.9 for the Artic ocean

Fig.10 for the Artic ocean

Fig.9for the Atlantic ocean

Fig.10 for the Atlantic ocean

Fig.9for the Pacific ocean

Fig.10for Pacific ocean

Fig.9for the Indian ocean

Fig.10for the Indian ocean

Fig.9 for the Southernocean

Fig.10for the Southernocean
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XIV. Passive Scalar

In Appendix C we develop a model to compute the diffusivity K c

e.g., tritium. The mean concentration C satisfies the equation

DC 0
= - ?;2.ui c

1

Here, uic is the turbulence-induced concentration flux. In the stationary, local case,

w--c = - K 0C

where the passive scalar diffusivity K c is given by:

K c = A-lrpc[W--_ + (1-71)rc0ga T w---0]

with

for a passive scalar,

(30a)

(30b)

(30c)

A = 1 + (1-71)rpcTc0N2 (30d)

Using Eqs.(18c) and (19a) for the turbulent variables _ and w--0, we can express (30c) in

the same functional form as (20a,b), namely

with A>0 given by:

K2 2 7-rDc(1-t A)Kc = 2Sc T ' Sc = g-_ (30e)

A = AoS m + A1ShRi (30g)

Ao = 3)_3- A2' A1 = 4)_4 + 3(1-71)rcor-1 (30h)

A = 1 + (1-Ta)rpcrcOr-2tppd (30i)

We recall that ¢ is given by Eqs.(28c--e). As for the time scales, we suggest to identify

rpc= rpo, r oc= r 0 and employ (4f-g).

The case of a passive scalar
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Following the formalism developedin Canuto (1994), the dynamic equation for the

turbulent velocity ui is given by:
Dui

=-ujUi,j-ox!_ i 0 luu-_jt i j-uiuj)D-t-

while that of the fluctuating temperature 0 is:

02u i
+ Ai0 + _ (C.1)

J

020

D0 0 u ui----_)+ XT 0x?DT = - uiT,i - _xi( i 0 - (C.2)
J

If we further consider a passive scalar field C, the corresponding turbulent component c

satisfies the equation:

Dc 0 02c
=-u.C - (uic-u--ic)+ (C.3)

]_- 1 ,i Ox i XCOx ?
J

where )_c is the kinematic diffusivity of the c-field. To construct the required correlation

wc, we multiply (C.1) by c, (C.3) by ui, average the results and sum the results. We

obtain"

where

D -- -- -- i

istcui + Df = - (uiujC j + cujUi,j) + ki-0E - II_ - ec (C.4)

i
where we have used <..> instead of a bar for notational convenience and where

C

represents the dissipation of ggi due to molecular forces. For ii e we employ an expression1

analogous to (A.7) but retain only the first two terms,

li.c = r-1 ui c + 71Aic--0 (C.6)1 pc

Clearly, we need the correlation "0c, which we derive using Eqs.(C.2)-(C.3). The result is:

0(7 _c 0I'Df=-( aTj + aTj)+x  ,jj + Xc jj (c.7)
The last two terms can be rearranged to read

xsc-e,j_+ Xc_jj = ,(Xc+X_)(_),jj-(Xc+Xs),_,j+ _(Xc-Xr)[(_j),j-(c-eTo),jl
(c.8)

The first term may be incorporated with the diffusion term, the last term can be neglected

38



comparedwith others while the secondterm, taking into account that XT>>Xs, can be

parameterized as

so that finally

0C -- 0T

_tc-0+ Df=- (u---0iaTj+ ujcaTj)- "_b_

In the stationary, local (no diffusion) case, the model gives:

_cb_=_(ui-0oc _icor_.+ aT.)
1 1

r-I ui c -- + _-_jUi + Aipc = - (uiujC,j ,j) (1-71)0-d

Thus,

(C.10)

where

0C (C.13)
Aijujc = - (Kc)ij -O-_-j

Aij - 5ij+ rpc[Ui,j + (1-71)Airc0T,j]

(Kc)ij--- rpc[UiU----_ + (1-'_l)rc0A i uj--70]

In the case of vertical diffusivities, we further have

(C.14)

(C.15)

- K 0C (C.16)_-/= c-07

where the passive scalar diffusivity K c is given by:

K c = a-lrpc[W--2 + (1-71)rc0ga T

with

A - 1 + (1-71)rpcrc N2

We recall that w-_ and w---0are provided by the turbulence model.

(c.17)

(C.18)
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